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ABSTRACT
Many accessibility features available on mobile platforms require
applications (apps) to provide complete and accurate metadata de-
scribing user interface (UI) components. Unfortunately, many apps
do not provide su�cient metadata for accessibility features to work
as expected. In this paper, we explore inferring accessibility meta-
data for mobile apps from their pixels, as the visual interfaces often
best re�ect an app’s full functionality. We trained a robust, fast,
memory-e�cient, on-device model to detect UI elements using a
dataset of 77,637 screens (from 4,068 iPhone apps) that we collected
and annotated. To further improve UI detections and add seman-
tic information, we introduced heuristics (e.g., UI grouping and
ordering) and additional models (e.g., recognize UI content, state,
interactivity). We built Screen Recognition to generate accessibility
metadata to augment iOS VoiceOver. In a study with 9 screen reader
users, we validated that our approach improves the accessibility of
existing mobile apps, enabling even previously inaccessible apps to
be used.
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1 INTRODUCTION
Many accessibility features (e.g., screen readers [10, 38], switch
control [8, 36]) only work on apps that provide a complete and
accurate description of their UI semantics (e.g., class="TabButton",
state="Selected", alternative text="Pro�le"). Despite decades of work
on developer tools and education to support accessibility across
many di�erent platforms [16, 18, 59], apps still do not universally
supply accessibility metadata on any platform [42]. For example, all
of the 100 most-downloaded Android apps had basic accessibility
issues in a recent study [65]. The lack of appropriate metadata
needed for accessibility features is a long-standing challenge in
accessibility.

Apps may not be fully accessible for a variety of reasons. Devel-
opers may be unaware of accessibility, lack necessary accessibility
expertise to make their apps accessible, or deprioritize accessibility.
Developers often use third-party UI toolkits that can work across
platforms, but have limited built-in accessibility support. For exam-
ple, to make Unity apps accessible non-visually, developers either
have to use a paid Unity plugin [34] that replicates a screen reader
experience (catches gestures on a full-screen overlay and announces
focused UI elements) or manually recreate a similar accessible ex-
perience from scratch. First party UI toolkits (e.g., UIKit for iOS)
make accessibility much easier, but app developers still need to pro-
vide accessibility metadata, such as alternative text or accessibility
elements for custom views [7]. Much of the focus is on creating
new content and apps that are accessible, although most platforms
have a substantial legacy of inaccessible content and apps that may
no longer have active developer support. The myriad challenges of
achieving accessibility across many di�erent platforms and toolkits
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Figure 1: Overview of our approach: 1) Ten workers collected screenshots and UI trees in apps. 2) Forty workers annotated
the screens to provide complete metadata. 3) An on-device model (trained with annotated data) detects UI elements from
pixels. 4) Heuristics (e.g., ordering and grouping) and additional models (e.g., OCR) augment UI detections to improve the
user experience. 5) The generated accessibility metadata is made available to screen readers for use at runtime to improve the
experienced accessibility of apps.

for so many di�erent apps motivated us to automatically create
accessibility metadata from the pixels of app user interfaces.

In this paper, we introduce a new method for providing acces-
sibility metadata automatically from the pixels of the visual user
interface. In practice, the visual interfaces for mobile apps often re-
ceive themost attention from developers and best represent an app’s
intended functionality. To facilitate this method, we collected, anno-
tated, and analyzed 77,637 screens (from 4,068 iPhone apps). Using
this dataset, we trained a robust, fast, memory-e�cient, on-device
object detection model to extract UI elements from screenshots,
which achieves 71.3% Mean Average Precision. To add semantics
and further improve UI detection results, we introduced heuristics
to correct detections, provide navigation order, and group relevant
detections; we also used additional models to recognize UI content,
selection states, and interactivity. Our method creates metadata
useful for a wide variety of accessibility services [8–10, 36, 38],
and can be used either alone or to improve existing accessibility
metadata in an app. Fig. 1 shows integration with screen readers as
an example.

To demonstrate the utility of our approach, we created Screen
Recognition that provides this metadata to iOS VoiceOver, using
only screenshot pixels as input. In a user study with 9 screen reader
users, we validated that participants could use a wide variety of
existing mobile apps, including previously inaccessible ones. We
also explored the limitations of our approach, and discussed future
improvements as well as potential integration with developer tools.
At the high level, we believe our approach illustrates a new way to
start addressing the long-standing challenge of inaccessible apps
on mobile and, eventually, other platforms.

Our work contributes:

• An analysis of the characteristics (e.g., UI distribution, ac-
cessibility issues) of a large dataset of 77,637 screens (from
4,068 iPhone apps) we collected and annotated.

• A robust, fast, memory-e�cient, on-device object detection
model to extract UI elements from raw pixels in a screenshot,
which we trained and evaluated.

• Augmentation of UI detections for a better user experience.
Our heuristics correct detections, provide navigation order,
and group relevant detections; additional models recognize
UI content, state, and interactivity.

• A user study with 9 screen reader users, who tried out apps
of their choices with VoiceOver with and without our ap-
proach applied. Their feedback validates our approach can
signi�cantly improve accessibility on existing apps.

2 RELATEDWORK
Our work builds from prior work on (i) supporting mobile acces-
sibility, (ii) detecting UI elements from pixels, and (iii) automatic
understanding of UI semantics.

2.1 Supporting Mobile Accessibility
Most mobile platforms (e.g., iOS, Android) these days contain built-
in accessibility services like screen readers [10, 38]) and support for
accessible input [8, 36], which allows people to use a wide variety
of abilities to use them. These technologies depend heavily on
the availability of accessibility metadata provided by developers to
expose the underlying semantics of apps [2, 37].When thismetadata
is provided, accessibility services have programmatic access to what
UI elements are available, what their content contains, what state
they are in, and what interactions can be performed on them. As
such, this metadata is fundamental to enabling accessibility services
to change the modalities by which someone can interact with UIs
and support people using them in di�erent ways. However, both
previous research [65–67], and our analysis in this paper (Section
3.3), show that developers routinely fail to include this information,
and many mobile apps remain inaccessible.
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Prior approaches for addressing this problem include encourag-
ing developers to �x accessibility problems through education [16],
standards [15, 62], and better testing tools [14, 18]. While these
approaches are important, since ultimately developers will be able
to best make their apps accessible, current progress remains slow
[42], motivating research that tries to solve the problem without
relying on the original developers’ cooperation. Supplanting or au-
tomatically generating metadata for existing inaccessible apps may
provide more immediate bene�ts for users. To this end, Interaction
Proxies allows missing metadata to be supplanted by end-users
by manually labeling UI elements and forming a shared reposi-
tory of such information for runtime repair [80, 81]. However, this
approach requires active volunteers to update and maintain an-
notations and customizations for a large number of apps which
are frequently updated. The largest prior attempt to “crowdsource”
accessibility, Social Accessibility for the Web [72], showed early
promise but ultimately was unable tomake a big dent in the problem
of Web accessibility.

Previous research in automated image description generation
[35, 39] and UI label prediction [23] also creates speci�c types
of accessibility automatically metadata from pixels. However, it
only comprises a subset of the information needed for accessibility
services to work as expected (i.e., these approaches do not make
missing UI elements available). Our approach goes much further
toward complete accessibility metadata generation from pixels,
automatically inferring missing UI elements (size, position, type,
content, and state), proper navigation order, and grouping.

2.2 UI Detection from Pixels
Our work involves inferring the locations and semantics of UI el-
ements on a screen to provide metadata for accessibility services.
Some early work extracted UI information to modify interfaces
from non-pixel sources, such as the accessibility [17] and instru-
mentation APIs [32, 58], or software tutorial videos [11]. However,
they require API access to enable instrumentation or to expose
UI elements, and often have incomplete access to UI metadata.
Pixel-based approaches, in contrast, are more independent of the
underlying app toolkit and do not require UIs to be exposed via
APIs.

Using pixels to identify UI elements has long been used to make
apps accessible. For instance, the OutSpoken screen reader for
Windows 3.1 allowed users to label icons on the screen, which it
then recognizes from their pixels alone [69]. Inferring information
from pixels of interfaces has been applied in diverse applications
such as interface augmentation and remapping [11, 17, 30, 79],
GUI testing [78], data-driven design for GUI search [20, 22, 45] or
prototyping [70], generating UI code from existing apps to support
app development [12, 21, 24, 53, 57], and GUI security [25]. Some
work also employed pixel-based methods to improve accessibility,
such as Prefab, which augments existing app interface with target-
aware pointing techniques that enhance interaction for people with
motor impairments [31].

There are multiple approaches to pixel-based interpretation of
interfaces. Recent work by Chen et al. [24] categorizes and evalu-
ates two major GUI detection approaches: using traditional image
processing methods (e.g., edge/contour detection [57], template

matching [30, 61, 78]) and using deep learning models trained on
large-scale GUI data [21, 24].

Traditional image processing methods: Edge/contour detec-
tion methods [57, 70, 73] detect and merge edges into UI elements,
which can work well on simple GUIs, but can fall short on images
(e.g., gradient background, photos) or complex GUI layouts. Alter-
natively, template matching methods [30, 78, 79] may work better
on these cases as there are more features in complex UI elements.
However, they require feature engineering and templates to recog-
nize the shape and type of UI elements, which may limit them to
detecting UIs without much variance in visual features.

Deep learning models: Pix2Code [12] applies an end-to-end
neural image captioning model to predict a Domain Speci�c Lan-
guage description of the interface layout. Chen et al. [21] applies
a similar CNN-RNN model to generate a UI skeleton (consisting
of widget types and layout) from a screenshot. In both works, the
generated layouts only provide relative locations of UI elements
in the view hierachy, while most accessibility services require the
absolute location of each UI element on the screen. Object detection
models can also locate UI elements on a screen: GalleryDC [20]
detects UIs with Faster RCNN model [64] to auto-create a gallery
of GUI design components, and White et al. [75] applies YOLOv2
model [63] to identify GUI widgets in screenshots to improve GUI
testing.

Hybrid methods: Some work [24, 26, 53] �rst uses traditional
image processing methods (e.g., edge detection) to locate UI ele-
ments, and then applies CNN-based classi�cation to determine the
semantics of UI elements (e.g., UI type).

Many of these approaches aim at facilitating the early stages of
app design rather than accessibility; therefore, they only focus on a
subset of metadata (i.e., UI location and type) needed by accessibility
services. In contrast, our deep learning-based approach is optimized
for accessibility use cases, provides more comprehensive metadata
from pixels (e.g., UI state, navigation order, grouping), and requires
less resources to e�ciently run on mobile phones.

2.3 Understanding UI Semantics
Beyond detecting UI elements from a screenshot, our work requires
obtaining a more thorough understanding of UI semantics (e.g.,
UI type, state, navigation order, grouping, image and icon descrip-
tions), which can further improve accessibility services and user
experience. Beyond UI element detection, recent data-driven design
work relies on large UI design datasets to infer higher level interface
semantics, such as design patterns [56], �ows [28], and tags [19].
Screen readers require inferring a di�erent set of semantics, such as
the navigation order and UI hierarchy (i.e., grouping) for a screen.
Some work applies machine learning on UI design datasets to infer
interface layout [13, 21, 22, 48]. Other work extracts interface struc-
ture through system APIs [52]. In contrast, we worked with people
with visual impairments to create a heuristics-based approach to
group and provide a navigation order for detected UI elements to
better �t the expected user experience of a screen reader.

In addition, it is important for accessibility services to know the
state and interactivity of an element (e.g., clickability, selection
state), so they can handle elements di�erently (e.g., VoiceOver will
announce "Button" for clickable UI elements; Switch Control may
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skip non-interactive UI elements in navigation to save time). The
work by Swearngin et al. [71] predicts the human perception of
the tappability of mobile app UI elements, based on human annota-
tions and common clickability signi�ers (e.g., UI type, size). In our
work, we built and integrated a model to predict the clickability of
some UI elements based on similar features (i.e.,, size, location, icon
type); however, our goal is to predict the actual clickability of UI
elements rather than the human perception; as [71] shows, these
two often mismatch. Beyond previous work to detect UI elements
from screenshots [12, 24, 53, 57], we additionally detect the selec-
tion state for relevant UI element types (e.g., Toggle, Checkbox) by
inferring additional UI element type classes.

Lastly, we infer semantic information from UI elements to im-
prove the screen reader experience. To recognize icons, previous
work [50, 76, 77] trained image classi�cation models from UI design
datasets [27]. To describe content in pictures, prior work used deep
learning models to generate natural language descriptions of im-
ages [44, 46], and some accessibility improvement research has also
leveraged crowdsourcing to generate image captions [35, 39, 40].
We use an existing Icon Recognition engine and Image Descriptions
feature in iOS [4] to generate alternative text for detected icons and
pictures, respectively.

3 iOS APP SCREEN DATASET
To train and test our UI detection model, we �rst created a dataset
of 77,637 screens from 4,068 iPhone apps. Creating our dataset re-
quired two steps: (i) collecting the screens, in which we captured
screenshots and extracted information of their UI trees and accessi-
bility trees, and (ii) manually annotating the visual UI elements on
the screens. We �ne-tuned this process, including our custom data
collection and annotation software, through several pilot trials. The
detail of workers we recruited in data collection and annotation
and the instructions for annotators are in supplementary material.

3.1 Screen Collection
We collected a total of 80,945 unique screens from 4,239 iPhone apps,
manually downloading and installing the top 200 most-downloaded
free apps for each of 23 app categories (excluding Games and AR
Apps) presented in the U.S. App Store. Note that some apps are in
multiple categories. We skipped apps that required credit card infor-
mation (e.g., for in-app payment) or sensitive personal information
(e.g., log-in for banking apps, personal health data). We created
a set of placeholder accounts to log into apps that required this
in order to access more of their screens. We collected all screens
between 12/09/2019 and 02/13/2020.

Ten workers manually traversed screens in each app to collect
screen information using custom software we built. For each tra-
versed screen, our software collected a screenshot and metadata
about UI elements. The metadata includes a tree structure of all
exposed UI elements on a screen, and properties of each UI element
(e.g., class, bounding box, trait). We also extracted accessibility prop-
erties of each UI element that are exposed to the Accessibility APIs
(e.g., isAccessibilityElement, hint, value). Our collection software
also assigned a unique identi�er to each UI element. The collected
metadata has the same limitations in terms of completeness and
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Figure 2: The number of annotations for each UI element
type represented in the dataset.

correctness that motivated our approach. Therefore, establishing a
reliable ground truth requires annotating the collected screens.

3.2 Screen Annotation
Forty workers annotated all visually discernible UI elements in
the screenshots. The annotation process had two components: (i)
segmentation and (ii) classi�cation.

In segmentation, workers determined a bounding box for each
UI element. The annotation tool helped to direct workers toward
using a bounding box provided by a captured UI element, when
an appropriate one was available, to improve consistency across
workers and annotations. When no bounding box was available for
a UI element, the annotators manually drew a box. We established
guidelines to ensure consistency and quality, such as how to draw
a tight bounding box; when to group or separate bounding boxes;
what elements to ignore (e.g., background); and how to handle edge
cases (e.g., clipped elements).

For classi�cation, workers assigned attributes to the identi�ed
UI elements. For each, annotators assigned one of 12 common UI
types based on visual inspection: Checkbox, Container, Dialog, Icon,
Picture, Page Control, Segmented Control, Slider, Text, Text Field,
Tab Bar Item, and Toggle. Visual examples of UI types are avail-
able in our Supplementary Material. Two authors of this paper (a
researcher and a senior accessibility engineer) chose these UI types
by examining 500 samples screens to identify which elements are
important for accessibility services. For UI elements not in one of
these UI types, such as advertisements and map views, annotators
marked them as Other (0.5% of all annotations). Annotators also
labeled additional information for speci�c UI types, such as whether
each Checkbox or Toggle is selected, whether an element is click-
able, and which part of an element the bounding box encapsulates
(e.g., a Text Field’s outline or its placeholder text). As the attributes
can sometimes be ambiguous, annotators could also choose the
option “unsure”.

Tomonitor data quality and iteratively correct operational errors,
two researchers examined a random selection of 6% of the screens
after each of the 20 batches was annotated. In addition, our Quality
Assurance (QA) team examined 20% of screens that were annotated
in each batch and shared a detailed QA report. Based on this, we
worked with the annotators to reduce common errors. The total
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error rate we observed was 2.62% in all batches, which dropped from
4.49% (�rst batch) to 1.27% (last batch). On average, the error rate of
bounding boxes (e.g., missing or extra annotation, too big or small
of a box) was 1.35%; the error rate of UI type was 0.54%; and, the
error rate of UI attributes (e.g., clickable/not clickable, selected/not
selected) was 0.73%. We found that the primary errors were missing
annotations for pictures and confusion between clickable and not
clickable elements, a known challenge [71].

During the annotation phase, we discarded 3,308 screens that
were accidentally captured when an app was in the transition
between screens, accidentally showed an AssistiveTouch button,
would take too long to annotate (e.g., contain 50+ UI Elements), or
had much non-English text. All of these screens represent opportu
nities for future work, but we considered them out of scope for the
�rst version of the project. This resulted in 77,637 total annotated
screens.

3.3 Dataset Composition Analysis
To better understand the composition of our dataset, we conducted
two analyses. The �rst analysis explores our dataset’s biases be
tween di�erent UI types, which may impact our model performance
The annotations revealed an imbalance of UI types in app screens,
as shown in Fig. 2: Text has the highest representation (741,285
annotations); Sliders have the lowest (1,808 annotations); and the
top 4 UI types comprise 95% of annotations. We consider such data
imbalances in model training to improve performance on under
represented UI types, as discussed in Section 4.1.

Our second analysis examined discrepancies between annota
tions and UI element metadata for each screen to estimate how
many UI elements were not available to accessibility services. Note
that there are important limitations to this estimate, as these an
notations are not a perfect re�ection of all UI elements that are
important to accessibility service: annotators sometimes ignore UI
elements; annotations may include UI elements created for aesthetic
reasons that are not important for accessibility; annotations may
have additional errors as mentioned in Section 3.2. Furthermore,
the available UI element metadata do not account for all possible
ways to make an app accessible. For instance, some apps use cus
tom methods (e.g., re-implement a screen reader) when their UI
toolkits do not support native accessibility. Our analysis focused
on UI elements exposed to the native screen reader with the un
derstanding that annotations from human observation are still a
close approximation to important accessibility elements. In most
cases, the di�erences between annotations and existing accessibility
metadata suggest potential accessibility issues in a screen.

Matching annotations to UI elements in the view hierarchy
presents several challenges. Annotation bounding boxes sometimes
do not line up exactly to the underlying UI element’s. Sometimes
they di�er in the way they partition an overarching UI component
(e.g., treating individual lines or paragraphs of Text as individual
elements versus one large piece of Text, or exposing separate el
ements for the Icon, Container, and Text of a button versus just
exposing one of these parts to accessibility services). Some of the
larger exposed accessibility elements also have many smaller acces
sibility elements nested inside of them, creating further ambiguity
for which elements match to which annotations.
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Figure 3: A histogram of the percentage of screens binned by
what percentage of their annotations matched with an ex-
isting accessible UI element, with separate bars to show the
percentage of screens with 0% matches and 100% matches.

To make this comparison, we ignored advertisements or maps
and examined the remaining annotations with the following proce-
dure (which we describe in more detail in this paper’s supplemental
material): categorize annotations by whether any bounding box B
from a non-fullscreen accessibility element contains or overlaps
with annotation’s bounding box A, where we de�ne "containment"
as whether at least 85% of A’s area lies within B, and "overlap" as
whether the intersection over union of A and B is at least 5%. When
an exposed element’s bounding box contains only one annotation,
we consider them as a match with each other. We consider annota-
tions that have no overlap with any exposed accessibility elements
to not have a match, with a few exceptions like Icons that hori-
zontally align with already-matched Text elements that are not
independently clickable, as is often the case in table cells or but-
tons. For the remaining possibilities — an exposed element contains
more than one annotation, or overlaps but does not contain an
annotation — we examined 150 example screens with di�erent UI
element types to develop heuristics, which we tested on another 150
example screens. These heuristics try to match inconsistent bound-
ing boxes for Pictures and Text elements, nested bounding boxes,
and functionally redundant annotations. To maintain a high recall
on matches, these heuristics have lenient tolerances and do not
require clickable annotations to match with clickable UI elements.
Hence, we may have underestimated the number of un-matched
annotations.

As shown in Fig. 3, 59% of screens have annotations that do not
match to any accessible UI element (a mean of 5.3 and median of
2 annotations per screen). We found that 94% of the apps in our
dataset have at least one such screen, rather than just a few unus-
able apps contributing to a large number of these screens. In these
screens, our accessibility metadata generation approach has the
potential to expose missing accessibility elements. Our approach
could be especially useful in providing accessibility metadata for
the 4% of screens that do not expose any accessibility elements. As
shown in Fig. 4, the prevalence of matches between annotations
and accessible UI elements varied by UI type. Of all unmatched
annotations, 33% are Text and 21% are Picture. The discrepancy
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Figure 4: A bar chart showing the breakdown of unmatched
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between annotations and existing accessibility metadata demon-
strates the importance of annotation, which provides additional
information compared to prior mobile UI collection datasets [27].

4 UI DETECTION MODEL
We trained an object detection model to extract UI elements from
pixels, which locates UI elements on an app screenshot and predicts
their UI types. After experimenting with a variety of network archi-
tectures and con�gurations, we chose one that balances accuracy
and on-device performance. We describe the model architecture,
data, and evaluation below.

4.1 Model Architecture
We started by experimenting with Faster R-CNN (and its exten-
sion Mask R-CNN) [43, 64] which is one of the best-performance
object detection models evaluated on public datasets. As the goal
is to run this detection model on-device (iPhone), the inference
time and memory footprint became limiting factors. Faster R-CNN
takes more than 1 second for each screen and more than 120 MB
memory, unsuitable for on-device inference. We then experimented
with TuriCreate Object Detection toolkits [6], which is easy to
use and optimized for iOS devices. The TuriCreate model uses
approximately half of the memory (60M) and has a signi�cantly
faster inference time (around 20ms). In the pursuit of a more e�-
cient model with tighter bounding box predictions and a higher
mAP (mean Average Precision), we converged on a SSD (Single
Shot MultiBox Detector) model [51] that meets our requirements.
Speci�cally, we used MobileNetV1 (instead of large ResNet) as a
backbone to reduce memory usage. Another common challenge in
object detection tasks is detecting small objects. Unfortunately, UI
elements are relatively small compared to most targets often seen
in object detection tasks. We used Feature Pyramid Network (FPN),
which is a feature extractor designed with a hierarchical pyramid
to improve accuracy and speed when detecting objects in di�erent
scales. To handle class-imbalanced data, discussed in Section 3.3,
we performed data augmentation on underrepresented UI types
during training, and applied a class-balanced loss function (more
weight for underrepresented UI types). Our �nal architecture uses
only 20MB of memory (CoreML model), and takes only about 10ms

for inference (on an iPhone 11 running iOS 14). To train this model,
we used 4 Tesla V100 GPUs for 20 hours (557,000 iterations).

Object detection models often return multiple bounding boxes
for a given underlying target with di�erent con�dences. We use
two post-processing methods to �lter out duplicate detections: (i)
Non-Max Suppression picks the most con�dent detection from
overlapping detections [55]. (ii) Di�erent con�dence thresholds can
be applied on each UI type to remove less certain detections. We
picked con�dence thresholds per UI type that balance recall and
precision for each (Figure 5).

4.2 Training and Testing Data
The training and testing datasets include 13 classes (Table 1) de-
rived from the UI types in annotation: Checkbox (Selected), Check-
box (Unselected), Container, Dialog, Icon, Picture, Page Control,
Segmented Control, Slider, Text, Text Field, Toggle (Selected), and
Toggle (Unselected). Based on initial experiments with UI detection
models, we split the Checkbox and Toggle into “Selected” and “Un-
selected” subtypes, and remapped the Tab Bar Item into Icon and
Text.

Checkbox andToggle: The visual appearance of “Selected” and
“Unselected” Checkboxes are quite di�erent (same for Toggles), and
splitting them improved the overall detection accuracy for each
class. Directly detecting selection state also means we do not need
a separate classi�cation model to determine the selection state of
a detected Checkbox or Toggle, which reduces on-device memory
usage and inference time.

Tab Bar Item: Initial experiments revealed that the standalone
Tab Bar Item class had good recall but low precision. This outcome
was because our initial model tended to detect most UI elements
at the bottom of screen as Tab Bar Items, including Icons and Text
at the bottom of screen of apps that did not have Tab Bars at all.
Therefore, we decided to split the Tab Bar Item annotations into
Text and/or Icon classes. Later, we will describe heuristics that we
introduced to group rows of Text and Icons near the bottom of the
screen into Tab Bar Items contained within a Tab Bar.

Regarding our training/testing data split, a simple random-split
cannot evaluate the model generalizability, as screens in the same
app may have very similar visual appearances. To avoid this data
leakage problem [47], we split the screens in the dataset by app. We
also ensured the representation of app categories, screen count per
app, and UI types are similar in the training and testing datasets.
We ran several random splits on apps, and stopped when the split
satis�ed these requirements. The resulting split has 72,635 screens
in the training dataset and 5,002 screens in the testing dataset.

4.3 Evaluation
For each UI type, we evaluated our model performance using Aver-
age Precision (AP), a standard object detection evaluation metric.
We choose a threshold of > 0.5 IoU (Intersection over Union),
commonly used in object detection challenges [33], to match a
detection with a ground truth UI element. On our testing dataset
(5,002 screenshots), our UI detection model achieved 71.3% mean
AP. If we weigh our results by the frequency of each UI type in the
dataset, the weighted mean AP is 82.7%. Table 1 shows the individ-
ual AP for each of the 13 UI types. Based on the precision-recall
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Table 1: Average Precision (AP) of EachUI Type in 5,002 Test-
ing Screens.

UI Type AP (>0.5 IOU) AP (Center) Count
Checkbox (Unselected)
Checkbox (Selected)
Container
Dialog
Icon
Page Control
Picture
Segmented Control
Slider
Text
Text Field
Toggle (Unselected)
Toggle (Selected)

77.5%
27.4%
82.1%
62.9%
79.7%
65.4%
72.0%
55.1%
55.6%
87.5%
79.2%
91.7%
90.5%

79.1%
27.4%
83.0%
63.3%
88.0%
87.3%
76.9%
57.6%
63.0%
91.7%
79.5%
91.7%
92.0%

471
119

11528
264

21875
454
9211
1036
110

47045
1379
247
131

Mean
Weighted Mean

71.3%
87.5%

75.4%
83.2%
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Figure 5: Our model’s precision-recall curves for detecting
each UI type. Examining individual performance enables us
to assign a con�dence threshold to each UI type, balancing
recall and precision (shown as orange points).

curves (PR curves) for individual UI types (as shown in Fig. 5), we
chose a di�erent con�dence threshold for each UI type. The use
case of screen reader accessibility informed our choices. Note that
the choices may di�er for other accessibility services (e.g., Switch-
Control users may prefer higher precision over recall to reduce the
number of elements to navigate when they can see elements that
our model fails to detect).

Our model achieved the lowest AP for the Checkbox (Selected).
Its low frequency in the dataset may contribute to poor model per-
formance; however, the Slider and Toggle also have a similar low
frequency. To further understand howmuch the model misclassi�es
one UI type as another, we generated a confusion matrix [68] as
shown in Fig. 6. We found that the model often confuses Checkbox

Figure 6: Confusion matrix for all UI types. Checkboxes (se-
lected) were often confused with Icons or Pictures. Icons
were sometimes confused with Pictures.

(Selected) with Icon and sometimes Picture. Checkboxes look visu-
ally similar to Icons, potentially explaining why our model tends
to mis-classify them as Icons, which have much higher frequency
in the dataset. Creating another classi�cation model to distinguish
Checkbox (Selected) from Icon detections has the potential to dou-
ble its recall.

We also evaluated our model’s detection performance with an
evaluation metric speci�c for accessibility services: whether the
center of a detection lies within its target UI element. With mobile
screen readers, double-tapping a detection will pass a tap event
to its center, which activates the target. This evaluation metric
is more relaxed than > 0.5 IoU and increases the mean AP from
71.3% to 75.4%, as shown in column AP (Center) of Table 1. In
some cases, the detection bounding box may not be tight enough
to include all semantic information of a target UI element, but still
enables users to manipulate the target. Thus, this metric may better
capture whether the model enables people to use the manipulable
UI elements.

5 IMPROVING THE USER EXPERIENCE
FROM UI DETECTION RESULTS

Our model correctly detects and classi�es most UI elements on
each screen; however, it may still miss some UI elements and gener-
ate extra detections. Even when the detections are perfect, simply
presenting them to screen readers will not provide an ideal user
experience as the model does not provide comprehensive acces-
sibility metadata (e.g., UI content, state, clickability). We worked
with 3 blind QA engineers and 2 senior accessibility engineers in
our company to iteratively uncover and design the following 6
improvements to provide a better screen reader experience. Over
5 months, the participating engineers tried new versions of the
model on apps of their choice, and provided feedback on when it
worked well and how it could be improved.
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Figure 7: The rawUI detection results fromourmodel would
not always result in the best screen reader user experience.
(Left) The model does not detect the leftmost Segmented
Control. (Middle) The rightmost umbrella has two detec-
tions; Checkbox and Text are not grouped. (Right) The big
Container detection at the bottom half may be removed. In
all examples, Icon and Text on the tab bar should be grouped
as Tab Buttons. The example screens are from Apple Health
and Dark Sky.

5.1 Finding Missing UI Elements and
Removing Extra Detections

Our UI detection model may miss some UI elements. As seen in
Fig. 7 Left, the model sometimes only detects a subset of Segmented
Controls (SC). In 99.1% of the screens in our dataset, every Text on
the same row of SCs is contained by a SC. Based on this pattern,
after we detect SCs in a screen, we �nd Text detections on the
same row of detected SCs but not contained by any SC. Our heuris-
tics update these Text elements as Segmented Controls. Another
common missing UI element is Text, especially when it is small
and/or on a complex background. To address this problem, we ran
the iOS built-in OCR engine [5], which is trained speci�cally to
detect text and outperforms our model on this class. We include
text detections from OCR when our model misses them (i.e., OCR
text has no overlap with existing detections).

Our UI detection model may also detect extra UI elements. For
a UI element, our model sometimes generates multiple bounding
boxes, each with a di�erent but visually similar UI type (i.e., Pic-
ture/Icon, Segmented Control/TextField/Container). For example,
in Fig. 7 (Middle), the rightmost "umbrella" has a box detected as
Icon and another box detected as Picture. Therefore, we apply a
customized Non-Max Suppression algorithm to remove duplicate
detections within these visually similar UI types. There are also
extra UI elements we should not remove (e.g., a large Picture can
contain a small Icon, a Container may contain a TextField), thus our
algorithm only removes spatially similar detections when IoU > 0.8.

5.2 Recognizing UI Content
UI types Text, Icon, and Picture (comprising 83.3% of UI elements
in our dataset) contain rich information. Therefore, it is important
to recognize and describe their contents to screen reader users. We

Figure 8: Examples of how selection state is visually indi-
cated in di�erent UI types. Di�erences in tint color is often a
signal of selection for Segmented Controls and Tab Buttons.
There are also other visual indicators for selection states.

leverage some iOS built-in features to recognize content in these
UI detections. For Text: we use the iOS built-in OCR engine [5],
which provides a tight bounding box and accurate text result with
a reasonable latency (< 0.5s). For Icon: we leverage the Icon Recog-
nition engine in iOS 13 (and later) VoiceOver to classify 38 common
icon types [10]. For Picture: we leverage the Image Descriptions
feature in iOS 14’s VoiceOver to generate full-sentence alternative
text [4].

5.3 Determining UI Selection State
Several UI types also have selection states, such as Toggle, Check-
box, Segmented Control, and Tab Button. With this metadata,
VoiceOver can announce UIs with selection states (e.g., "Airplane
Mode, O�", "Alarm, Tab, Selected" in Fig. 8). For Toggle and Check-
box, our UI detection model includes selection states in detected UI
types. For Segmented Control and Tab Button, we leverage their
visual information to determine the selection states. The most com-
mon visual indicator is the tint color. As shown in Fig. 8.f, the
selected Tab has tint color while other Tabs are not highlighted.
Within each Tab, we extract the most frequent color as the back-
ground color, and the second most frequent color as the tint color.
Among all Tab Buttons, we �nd the one with an outlier tint color
[60]. Finally, we assign a "selected" state to that detection, and a "not
selected" state to the remaining detections. Segmented Controls
also frequently use tint color as a visual indicator. As shown in Fig.
8, custom UI designs may keep the same tint color and use other
visual indicators (Fig. 8.c); therefore, we tried to address some com-
mon designs with additional heuristics, such as checking the bar at
the bottom of the Segmented Control (Fig. 8.d), or �nding the only
Tab with text (Fig. 8.g). We evaluate our selection state heuristics
on our testing dataset (5002 screens). On the 936 screens in which
our approach detects Tab Buttons, we assign the correct selection
state 90.5% of the time. Among 337 screens in which our approach
detects Segmented Controls, we assign the correct selection state
on 73.6% of screens.

5.4 Determining UI Interactivity
Knowing whether a UI element is interactive is important for screen
reader users.With the correct accessibilitymetadata, a screen reader
can announce actions supported by each UI element (e.g., "Page



Screen Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels CHI ’21, May 8–13, 2021, Yokohama, Japan

X of Y, swipe up or down to adjust the value" for a page control;
"Password, double tap to edit" for a text �eld; "Menu, button" for
a clickable UI element like a button, web link, table cell, etc). Sev-
eral UI types detected by our model (e.g., Text Field, Page Control,
Slider) already indicate their supported actions. On the other hand,
Text, Picture, and Icon can be non-clickable in some cases (e.g.,
Airplane Icon, "Inbox" Text in Fig. 8), but clickable in other cases
(e.g., Back Icon, "Add Data" Text in Fig. 7). According to feedback
from screen reader users, they can often infer the clickability of
Text and Picture elements from alternative text (generated by OCR
and Image Descriptions), but have a di�cult time telling if an Icon
is clickable from the Icon Recognition result (in addition, it is un-
available when the Icon is not in the 38 supported icon types). To
predict Icon clickability, we trained a Gradient Boosted Regression
Trees model [3] with several features (i.e., location, size, Icon Recog-
nition result). This model is trained with TuriCreate Boosted Trees
Classi�er toolkits [3]; it takes less than 10ms for inference and
uses 10MB of memory (CoreML model). We only mark an Icon as
clickable when our model is very con�dent, as screen reader users
prefer higher precision over recall: if a clickable Icon is predicted as
non-clickable, the user may still try to activate it; if a non-clickable
Icon is predicted as clickable, the user will hear "Button" in screen
reader announcements, and will be confused if the activation does
not do anything. Therefore, we pick a threshold for our model to
keep 90.0% precision, which allows 73.6% recall. Additionally, there
are more UI interactivities worth investigating in future work, such
as detecting the enabled/disabled state of UI elements.

5.5 Grouping Elements for E�cient Navigation
Grouping related UI elements makes navigation more e�cient for
screen readers and other accessibility services [8, 36]. Fig. 9 shows
the original detections from our UI element detection model; navi-
gating through a large amount of detections would take a long time
for screen reader users to understand the screen contents. To reduce
the number of UI elements in navigation, we group related elements
together. For grouped UI elements, we provide access to clickable
sub-elements through custom actions (supported by mobile screen
readers). The user can also read each non-clickable sub-element
by adjusting the speech granularity in the rotor [1]. This approach
still has limitations: when our model makes mistakes in inferring
clickability, users may lose access to some clickable sub-elements.
However, screen reader users noted that the increased e�ciency
from grouping was worth the tradeo�s of losing access to some
elements.

We developed multiple heuristics that group UI detections based
on their UI types, sizes, and spatial relationships on the screen. Fig. 9
displays the results of our grouping heuristics on example screens.
We provide the concatenated text of sub-elements as alternative
text for each grouped element.

• Text Grouping (Fig. 9.B):We group a TextT1 with a Text below
T2 if they satisfy: 1) they have x-overlap, and 2) the y-distance
between the two texts should be less than a threshold – we
choosemin(T1.hei�ht ,T2.hei�ht). We do this repetitively to
group multi-line text.

• Tab Grouping (Fig. 9.B): We group Icon and Text detections
into Tab Buttons by 1) �nding the bottom-most detection B;

2) determining if a Text or Icon detection D is in the tab bar
if D is in the bottom 20% of the screen, and B.bottom - D.top
is within a threshold (0.08 * screen height) so that D is not
much higher than B; 3) grouping Icon and Text detections
that have x-overlap together, and determined to be in the
tab bar, as one Tab Button.

• Container Grouping (Fig. 9.D): We group a Container detec-
tion with all detections inside it as one element.

• Picture Subtitle Grouping (Fig. 9.D): We group Text T1 as a
descriptive subtitle with Picture P if they satisfy: 1) they have
50%+ x-overlap with P , 2)T1 has a y-distance to P less than a
threshold (we chose 0.03 * screen height), and 3) T1 is closer
to P than to any other detection below T1. We additionally
group a second line of TextT2 belowT1 if it satis�es the same
conditions in relation to T1.

To evaluate these heuristics, we ran our grouping heuristics on
a subset of collected screens (n=300, randomly picked). Overall, our
grouping heuristics reduced the number of UI elements to navi-
gate by 48.5% (Without Grouping - Mean: 21.83, Std: 12.8, With
Grouping - Mean: 12.1, Std: 7.6). Two researchers (authors of this
paper) manually tabulated grouping errors across these screens us-
ing a rubric which contains 4 grouping heuristic categories (i.e., text
grouping, container, picture subtitle, tab), and "Other" for additional
errors. Grouping errors are classi�ed as "Should have grouped" if
two or more elements should have been grouped together, or "In-
correctly grouped" if two or more unrelated elements were grouped.
As there may be multiple groupings for some elements, we did not
count a grouping or missed grouping as an error if it was ambigu-
ous. We acknowledge that human observation is not perfect, and
there might be bias in doing evaluation by the authors. To mitigate
these concerns, the researchers �rst independently evaluated 10%
of screens and then discussed the errors found until reaching a su�-
cient level of agreement. After reaching consensus, each researcher
examined half of the screens, and found very similar numbers of
grouping errors across independent sets of screens. Among 1568
groups made, 88 (5.6%) were "Incorrectly grouped". In addition, we
found 99 "Should have grouped" errors. There were 0.62 errors per
screen (Min=0, Max=8, Std=1.1).

The largest set of grouping errors were from our text grouping
heuristic (25.7%), followed by picture subtitle (16%), tab button (8.6%)
and container (7.5%). 42% of the grouping errors did not fall into
one of our heuristic categories: the majority of errors (48 errors)
consisted of missed grouping text with contained icons, remaining
OCR-detected text inside icons, and grouping of unrelated text.
While evaluating grouping errors, we also found opportunities to
further improve the user experience (e.g., group text and text �eld
below it), which may lead to new heuristics.

While our heuristics in general performed well, we note that
these heuristics are likely to be more successful when applied to iOS
app screens due to the in�uence of native user interface widgets and
design guidelines (i.e., Human Interface Guidelines). For example,
our Tab Grouping heuristic likely works well because iOS provides a
standard widget, which a signi�cant amount of apps use, to display
tabs at the bottom of an app screen (i.e., UITabBarController). As
such, our heuristics may need to be adapted for other platforms
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Figure 9: Example screens to demonstrate our grouping and ordering heuristics: (A, C)UI detections from ourmodel in screens
of Apple Clock and Apple Watch apps, (B) the output demonstrating text and tab button grouping, and (D) the output demon-
strating picture/subtitle and container grouping. Our ordering heuristics infer the navigation order (shown on the top-left of
each box), which recursively divides the screen into vertical and horizontal regions (visualized examples with dashed line).

(e.g., Android) if the platform’s widget designs are quite di�erent
from iOS designs.

5.6 Inferring Navigation Order
Mobile screen readers allow swiping to navigate all UI elements
on a screen in a logical order. Therefore, we need to provide our
detected UI elements to screen readers in a reasonable navigation
order. After applying our grouping heuristics, we determine the
navigation order with a widely used OCRXY-cut page segmentation
algorithm [41, 54], which sorts text/picture blocks of a document
in human reading order. We apply the algorithm to our problem, as
demonstrated in Fig. 9.D: (i)We build vertical segments by determin-
ing Y coordinates where we can draw a horizontal line across the
screen without overlapping any element. (ii) Within each vertical
segment, we build horizontal segments by locating X coordinates
where we can draw a vertical line down the segment without over-
lapping any element. (iii) We recursively call this algorithm on
all horizontal segments to further create vertical segments and so
forth. When we can no longer subdivide a segment, we order the
elements inside by top-to-bottom. If there is a tie, we order them
left-to-right. Within grouped elements, we also apply the XY-cut
algorithm to order sub-elements. Fig. 9 shows a number on the
top-left of each element to indicate the navigation order we provide
to screen readers. In Fig. 9.B, a screen reader user would hear "Edit",

"Add", "World Clock", and "Today, plus 0 HRS, Cupertino" for the
�rst four elements.

To evaluate our ordering heuristics, we ran them on a subset
of collected screens (n=380, randomly picked). Ten accessibility
experts in our company annotated the ground truth navigation
order. For each screen, we compared our heuristics output and
the ground truth navigation order with a metric often seen in list
sorting: the minimum insertion steps to make our output the same
as ground truth (in one step, an element can be inserted to any other
position in list). Our heuristics output perfectly matched the ground
truth for 280 screens (73.7%), while 345 screens (90.8%) had less than
1 error (i.e., 1 insertion step) for every 10 elements. On average,
there were 18.7 elements per screen (min=1, max=92, std=13.8);
our heuristics produced a mean of 0.67 errors per screen (min=0,
max=17, std=1.79).

To understand where our ordering heuristics could be improved,
we examined 35 screens with more than 1 error for every 10 el-
ements. On 12 screens, we found the ordering was ambiguous
(i.e., there were multiple reasonable orderings). For the remaining
screens, 19 of them would have a better navigation order by improv-
ing our grouping heuristics: (i) our heuristics grouped some text
with pictures incorrectly, or our picture subtitle grouping heuristic
did not group some text as a subtitle which caused ordering errors
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(13 screens); (ii) our text grouping heuristics grouped some text in-
correctly or should have grouped some text which caused ordering
errors (9 screens); (iii) our heuristics detected some icons inside of
text blocks but did not group them with the text, so the icons were
ordered after the text (6 screens).

6 USER STUDIES
To understand how our approach impacts the user experience of
screen readers, we conducted a user study with 9 people with visual
impairments (3 Female, 6 Male). They are all regular iOS VoiceOver
users with an average of 8.9 years (min = 6, max = 11) of VoiceOver
experience. The average age of participants was 44.2 years (min
= 28, max = 65). In the studies, we asked participants to use apps
with regular VoiceOver and Screen Recognition (our approach)
and compare their experiences. There were two types of studies:
(i) Interview studies: through video conferencing with 4 screen
reader users (1F, 3M) who are accessibility QA engineers in our
company, and (ii) Email studies: a remote unsupervised usability
study through emails with 5 screen reader users (2F, 3M) who
volunteered to participate, which provides more time �exibility
than interviews. To reduce bias, we excluded the QA engineers who
provided suggestions in Section 5 from our studies.

6.1 Procedure
Both studies used the same instructions and questions. We asked
participants to select 3 iOS apps that they found di�cult or impos-
sible to use with VoiceOver. If participants could not think of such
apps, we o�ered a list of suggestions. We asked the participants
to spend 10 minutes using each app, �rst with regular VoiceOver
and then with Screen Recognition. During the study, participants
were always aware of the current condition they were testing. We
did not counterbalance the order of conditions, as all participants
were experienced VoiceOver users and most apps in the study were
suggested by participants (they already tried these apps with reg-
ular VoiceOver before). We collected feedback from participants
about the di�erences they experienced between regular VoiceOver
and Screen Recognition, bene�ts from Screen Recognition, and
challenges encountered using Screen Recognition.

Due to the COVID-19 pandemic, we conducted all user stud-
ies remotely. In the Interview studies, we sent study preparation
through email in advance and feedback was collected through a
conference call. In the Email studies, we sent and collected all study
instructions and feedback via email.

6.2 Results
Every participant chose apps to use during the study that they
had previously found di�cult to use with VoiceOver. Participants
used 22 di�erent apps, only 2 of which came from our suggested
list. Only 2 apps were explored by multiple participants: one from
our suggested list (chosen by 4 participants), and one not on the
list (chosen by 2 participants). Note that we do not share speci�c
app names because we want to be respectful and not single out
individual developers. Participants chose a mix of apps with varying
usability levels for VoiceOver and rated them from 1 (not usable at
all) to 5 (completely usable). Most participants chose 3 apps that
they already knew to be inaccessible, but 3 participants also decided
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Figure 10: (Left) A histogram of usability ratings for apps
using regular VoiceOver and Screen Recognition. (Right) A
histogram of the rating di�erences within individual apps
between the two systems, as the rating for Screen Recogni-
tion minus the rating for regular VoiceOver.

to include an app that they knew to be accessible which provided
useful insights. All apps that participants chose were available on
the iOS App Store as of August 2020. Some apps were built by
major tech companies, but most were made by smaller developers
or non-tech companies, such as media companies.

Overall, usability ratings for apps using regular VoiceOver aver-
aged 2.08 (SD 1.20), whereas ratings for apps using Screen Recogni-
tion averaged 3.73 (SD 0.78). This di�erence is signi�cant according
to a Wilcoxon signed-rank test (p < 0.00004). Figure 10 shows a
histogram of usability ratings, and a histogram of rating di�erences
within individual apps between the two systems. It was clear to
participants that the researchers created Screen Recognition, so
these results may re�ect some bias [29, 74], but still show quite a
meaningful di�erence between the two systems, especially on the
inaccessible apps that participants picked. In 4 cases, participants
gave Screen Recognition an identical or worse usability rating than
regular VoiceOver. Two of these cases were for apps that the par-
ticipant rated very usable (5) with regular VoiceOver, and then still
rated Screen Recognition as usable with either a 4 or 5. In the other
two cases, both experiences received the same low rating (2 and
3 respectively). Based on participants’ feedback and our own use,
we believe these latter ratings re�ect that these apps are di�cult to
use in general, even for sighted individuals.

For apps that participants rated unusable with regular VoiceOver,
all noted that these apps exposed user interface elements without
labels, and that it was frustrating to know that a control existed but
not know its purpose. When exploring the same apps with Screen
Recognition, all participants remarked that they became aware of
user interface elements that they did not realize existed because
they were not exposed in the regular VoiceOver interface. One
participant noted that in one app a slider became available, which
they found surprising because these elements are often unavailable
or unusable. In another case, a participant said:

QA2:“I am so excited I just NEED to share. Last night
I downloaded [app name removed]...which has no AX
elements and is completely unusable. So I decided to
enable [Screen Recognition]. Guess who has a new high
score? I am in AWE! This is incredible. It is the �rst
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mainstream game I’ve ever been able to play on iOS
besides Trivia Crack.”

Three participants chose to try apps that they knew to be acces-
sible. In these cases, the participants still compared Screen Recogni-
tion favorably to regular VoiceOver, remarking that Screen Recog-
nition exposed certain features in a di�erent and potentially useful
way. For example, one participant noted that the screen layout was
revealed to them in a way that they often missed, saying:

P1:“It was fun to discover the contents of the pro�le pic-
tures displayed next to the person name and understand
the layout of the app. Obviously, when making the app
accessible, we oftentimes lose the understanding of the
screen layout. With [Screen Recognition] we now have
the ability to understand the app spatially in addition
to contextually.”

The only Screen Recognition experience rated as less usable than
the regular VoiceOver experience occurred with a social media app.
The participant that introduced this app noted that it was very
accessible and gave it a usability score of 5 with regular VoiceOver,
whereas they gave Screen Recognition a usability score of 4. The pri-
mary reason for this di�erence was the grouping choices from app
developers, which made navigating through many tweets quick and
focused on only the essential content. The participant noted that
navigating this interface with Screen Recognition was much slower,
which includes a variety of low priority content (e.g., number of
likes, number of retweets, hash tags, etc.) that the app interface
with regular VoiceOver omitted. However, this participant noted
that they saw value in the Screen Recognition interface in certain
situations, because, although slow, it did allow access to certain
content that wasn’t available otherwise. Being able to switch be-
tween the two modes enabled this participant to drill down into the
interface content when necessary, while also enjoy a streamlined
experience the rest of the time.

This example illustrates an important result: Even with Screen
Recognition, the most accessible experiences are still created by app
developers who understand how the content can best be conveyed
to meet users’ needs. Our system may not have the higher-level
understanding of app interfaces to realize that the tweet list should
be streamlined, while app developers can better understand the
design and implement accessibility experience for users.

Screen Recognition has room for improvement. Two partici-
pants noted that while many controls became apparent with Screen
Recognition, the labels on these controls sometimes required inter-
pretation. For example, an icon labeled “down arrow” might cause
an item to move down in a list, but did not expose this higher level
semantic. In these cases, the participants remarked that they were
able to �gure out the user interface with some experimentation.
Another limitation of Screen Recognition is that it cannot expose
features that do not have a clear visual a�ordance. For example, a
participant discovered that with Screen Recognition, it was impos-
sible to turn the pages in a book reading app, even though Screen
Recognition made the previously unreadable book text available. In
this app, the page turning was actuated by a swipe from the screen
edge, which had no visual a�ordance for Screen Recognition to
recognize. A challenging problem for future work could be to better

understand the semantics of the visual interface. Finally, one par-
ticipant noted that they occasionally experienced lag with Screen
Recognition on especially complex screens, which helps justify our
intentions to later explore optimizations for our system.

7 DISCUSSION & FUTUREWORK
Despite persistent e�ort in developer tools, education, and policy,
accessibility remains a challenge across platforms because many
apps are not created with su�cient semantic metadata to allow
accessibility services to work as expected. In this paper, we intro-
duced an approach that instead generates accessibility metadata
from the pixels of the visual interfaces, which opens a number of
opportunities for future work.

A number of next steps follow directly from the approach and
results presented in this paper. A clear next step is to keep improving
our model and our heuristics to make them more accurate. Our
current approach generates metadata from scratch over and over
again; future work may explore how to allow this metadata to
persist across invocations of an app or even across devices. Another
next step is to apply our approach to other mobile platforms (e.g.,
Android) and also beyond the mobile context, such as for desktop
or Web interfaces, which are similarly inaccessible due to a lack
of appropriate semantics provided by developers. Applying our
approach to the desktop or Web would introduce new challenges,
as our current method takes advantage of the size and complexity
constraints of mobile apps.

In thework presented here, we used only pixel information to cre-
ate the semantic metadata needed for accessibility services. We did
not leverage the semantic data inside the app view hierarchy, which
accessibility services use [10, 38]. While combining information
from our approach and view hierarchy could reconstruct a more
complete set of accessibility metadata, we found that implementing
this idea presents engineering challenges for e�ectively extracting
and merging the two representations on-the-�y. Currently, users
must enter a separate mode to access the automatic metadata; as
we explore combined modes, we suspect we will need to even more
carefully consider how to convey the inferred metadata to users.
Furthermore, questions remain about how to resolve incompatible
di�erences between the representations, especially in regard to
higher-level concepts, such as the grouping and ordering. Instead
of post hoc merging, an interesting opportunity for future work
could be to build a model that leverages the structured information
in the view hierarchy in addition to the pixels.

Ourmodel and heuristics havemultiple other use cases to explore.
We demonstrated how we can apply them to improve accessibility
on users’ devices in real time. Another opportunity is to incorpo-
rate the model into developer tools to help developers create more
accessible apps from the start. Current accessibility evaluation tools
mainly depend on the (potentially incomplete) metadata developers
already provide, limiting the tools’ access to information to inform
their accessibility suggestions. Our approach for understanding UIs
from pixels could enable developer tools to identify more acces-
sibility issues and automatically suggest �xes. Finally, while we
have focused on accessibility use cases, the accessibility APIs also
form the foundation of most on-device automation [49], and so we
expect our approach to �nd utility in many other use cases.
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The longevity of our model is uncertain. Visual app designs 
change over time, both in terms of aesthetic qualities and in relation 
to their target devices. While people are generally able to adapt to 
such visual changes, our model may need to re-trained. It would 
be ideal to create a more universal model that is resilient to such 
changes or could even update itself while visiting new apps. While 
the uncertainty remains, our dataset, as we update it over time, will 
provide a window into how these visual changes occur and how 
they a�ect automatic methods operating on them.

Finally, our approach could be seen as reactive to the way most 
app development currently prioritizes visual design, instead of 
approaching the problem from an accessibility �rst perspective. We 
hope that by automating some aspects of accessibility metadata 
generation, especially through future enhancements to developer 
tools, our approach could help scale basic accessibility, freeing 
researchers, developers, and accessibility professionals from playing 
catch up, and instead enable them to work toward more innovative 
and comprehensive accessible experiences for all.

8 CONCLUSION
We have presented an approach to automatically create accessi-
bility metadata for mobile apps from their pixels. Our technical 
evaluation and user evaluation demonstrate that this approach is 
promising, and can often make inaccessible apps more accessible. 
Our work illustrates a new approach for solving a long-standing 
accessibility problem, which has implications across a number of 
di�erent platforms and services. Going forward, we would like to 
use the auto-generated accessibility metadata to not only directly 
impact accessibility features, but also help developers make their 
apps more accessible from the start.
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